Chapter 4

The Three-Moment Equations-I

Instructional Objectives

After reading this chapter the student will be able to

1. Derive three-moment equations for a continuous beam with unyielding supports.
2. Write compatibility equations of a continuous beam in terms of three moments.
3. Compute reactions in statically indeterminate beams using three-moment equations.
4. Analyse continuous beams having different moments of inertia in different spans using three-moment equations.

Introduction

Beams that have more than one span are defined as continuous beams. Continuous beams are very common in bridge and building structures. Hence, one needs to analyze continuous beams subjected to transverse loads and support settlements quite often in design. When beam is continuous over many supports and moment of inertia of different spans is different, the force method of analysis becomes quite cumbersome if vertical components of reactions are taken as redundant reactions. However, the force method of analysis could be further simplified for this particular case (continuous beam) by choosing the unknown bending moments at the supports as unknowns. One compatibility equation is written at each intermediate support of a continuous beam in terms of the loads on the adjacent span and bending moment at left, center (the support where the compatibility equation is written) and rigid supports. Two consecutive spans of the continuous beam are considered at one time. Since the compatibility equation is written in terms of three moments, it is known as the equation of three moments. In this manner, each span is treated individually as a simply supported beam with external loads and two end support moments. For each intermediate support, one compatibility equation is written in terms of three moments. Thus, we get as many equations as there are unknowns. Each equation will have only three unknowns. It may be noted that, Clapeyron first proposed this method in 1857. In this lesson, three moment equations are derived for unyielding supports and in the next lesson the three moment equations are modified to consider support moments.

Three-moment equation

A continuous beam is shown in Fig.12.1a. Since, three moment equation relates moments at three successive supports to applied loading on adjacent spans, consider two adjacent spans of a continuous beam as shown in Fig.12.1b. M_{L}, M_{C} and $M_{R} \quad$ respectively denote support moments at left, center and right supports. The moments are taken to be positive when they cause tension at
bottom fibers. The moment of inertia is taken to be different for different spans. In the present case I_{L} and I_{R} denote respectively moment of inertia of; left and right support and l_{L} and l_{R} are the left and right span respectively. It is assumed that supports are unyielding. The yielding of supports could be easily incorporated in three-moment equation, which will be discussed in the next lesson. Now it is required to derive a relation between M_{L}, M_{C} and M_{R}. This relationship is derived from the fact that the tangent to the elastic curve at C is horizontal. In other words the joint C may be considered rigid. Thus, the compatibility equation is written as,

$$
\begin{equation*}
\theta_{C L}+\theta_{C R}=0 \tag{12.1}
\end{equation*}
$$

The rotation left of the support $C, \theta_{C L}$ and rotation right of the support C, $\theta_{C R}$ may be calculated from moment area method. Now,

$$
\begin{align*}
& \theta_{C L}=\frac{\text { Deflection of } \mathrm{L} \text { from tangent drawn at C(LL') }}{l} \\
&=\frac{\text { Moment of } \mathrm{M} / \mathrm{EI} \text { diagram between } \mathrm{C} \text { and } \mathrm{L} \text { about } \mathrm{L}}{l_{L}} \\
&=\square \backsim \square A_{L} x_{L} \square \quad 1 \square M_{L} \square \quad 1 \quad 1 \square M_{C} \square \quad 2 \quad \leftrightarrow \\
& l_{L} \square+\square \square l_{L} \quad \square \quad 2 \square E I_{L} \square \tag{12.2}\\
& \theta_{C L}=\frac{A_{L} \overline{x_{L}}}{E I_{L} l_{L}}+\frac{M_{L} l_{L}}{6 E I_{L}}+\frac{M_{C} l_{L}}{3 E I_{L}}
\end{align*}
$$

Note that the actual moment diagram on span $L C$ is broken into two parts (1) due to loads applied on span $L C$ when it is considered as a simply supported beam and, (2) due to support moments. In the above equation $\quad A_{L}$ and A_{R} denote respectively area of the bending moment diagrams due to applied loads on left and right supports. $\quad x_{L}$ and x_{R} denote their respective C.G.(center of gravity) distances from the left and right support respectively. Similarly,

$$
\begin{aligned}
\theta_{C R} & =\frac{\text { deflection of } \mathrm{R} \text { from tangent drawn at } \mathrm{C}\left(\mathrm{RR}^{\prime}\right)}{l_{R}} \\
& =\frac{\text { Moment of } \mathrm{M} / \mathrm{EI} \text { diagram between } \mathrm{C} \text { and } \mathrm{R} \text { about } \mathrm{R}}{l_{R}}
\end{aligned}
$$

$$
\begin{equation*}
\theta_{C R}=\frac{A_{R} \overline{x_{R}}}{E I_{R} l_{R}}+\frac{M_{R} l_{R}}{6 E I_{R}}+\frac{M_{C} l_{R}}{3 E I_{R}} \tag{12.3}
\end{equation*}
$$

Substituting the values of $\theta_{C L}$ and $\theta_{C R}$ in the compatibility equation (12.1),

$$
\begin{equation*}
\frac{A_{L} \bar{x}_{L}}{E I_{L} l_{L}}+\frac{M_{L} l_{L}}{6 E I_{L}}+\frac{M_{C} l_{L}}{3 E I_{L}}+\frac{A_{R} \bar{x}_{R}}{E I_{R} l_{R}}+\frac{M_{R} l_{R}}{6 E I_{R}}+\frac{M_{C} l_{R}}{3 E I_{R}}=0 \tag{12.4}
\end{equation*}
$$

which could be simplified to,

$$
\begin{gather*}
\square l_{L} \square \tag{12.5}\\
M_{L} \square \frac{l_{L}}{I^{L} \square}+2 M_{C} I^{L} \frac{l_{R} \leftrightarrow}{+}+\frac{\square l_{R} \square}{I^{R} \uparrow}+M_{R \square}-\square=-\frac{6 A_{R} x_{R}}{I l}=\frac{6 A_{L} x_{L}}{I l} \\
l_{R L}
\end{gather*}
$$

The above equation (12.5) is known as the three-moment equation. It relates three support moments $\quad M_{L}, M_{C}$ and M_{R} with the applied loading on two adjacent spans. If in a span there are more than one type of loading (for example, uniformly distributed load and a concentrated load) then it is simpler to calculate moment diagram separately for each of loading and then to obtain moment diagram.

Fig. 12.1 (a) Continuous beam.

Bending moment diagram due to applied loading.
m_{1}

Bending moment diagram (B.M.D) due to support moments.
Fig. 12. 1(b) Two adjacent spans of a continuous beam.

Alternate derivation

The above three moment equations may also be derived by direct application of force method as follows. Now choose M_{L}, M_{C} and the M_{R}, the three support moments at left, centre and right supports respectively as the redundant moments. The primary determinate structure is obtained by releasing the constraint corresponding to redundant moments. In this particular case, inserting hinges at L, C and R, the primary structure is obtained as below (see Fig. 12.2)

Fig. 12.2. Primary structure

Let displacement (in the primary case rotations) corresponding to rotation M_{C} be θ_{L}, which is the sum of rotations $\theta_{C L}$ and $\theta_{C R}$. Thus,

$$
\begin{equation*}
\theta_{L}=\theta_{C L}+\theta_{C R} \tag{12.6}
\end{equation*}
$$

It is observed that the rotations $\quad \theta_{C L}$ and $\theta_{C R}$ are caused due to only applied loading as shown in Fig.12.2.This can be easily evaluated by moment area method as shown previously.

$$
\begin{equation*}
\theta_{L}=\frac{A_{L} \bar{x}_{L}}{E I_{L} l_{L}}+\frac{A_{R} x_{R}}{E I_{R} l_{R}} \tag{12.7}
\end{equation*}
$$

In the next step, apply unit value of redundant moments at L, C and R and calculate rotation at C (i.e. flexibility coefficients).

$$
\begin{align*}
& a_{21}=\frac{l_{L}}{6 E I_{L}} \\
& a_{22}=\frac{l_{L}}{3 E I_{L}}+\frac{l_{R}}{3 E I_{R}} \tag{12.8}\\
& a_{23}=\frac{l_{R}}{6 E I_{R}}
\end{align*}
$$

Fig. 12.3 (a) Unit redundant force applied at L (1)

Fig. 12.3 (b) Unit redundant force applied at c.

Fig. 12.3 (c) Unit moment applied at R

In the actual structure the relative rotation of both sides is zero. In other words the compatibility equation is written as,

$$
\begin{equation*}
\theta_{L}+a_{21} M_{L}+a_{22} M_{C}+a_{23} M_{R}=0 \tag{12.9}
\end{equation*}
$$

Substituting the values of flexibility coefficients and \otimes_{L} in the above equation,

Or,
when moment of inertia remains constant i.e. $\quad I_{R}=I_{L}=I$,the above equation simplifies to,

$$
\begin{equation*}
M_{L}\left(l_{L}\right)+2 M_{C}\left\{l_{L}+l_{R}\right\}+M_{R}\left(l_{R}\right)=-\frac{6 A_{R} \bar{x}_{R}}{l_{R}}-\frac{6 A_{L} \bar{x}_{L}}{l_{L}} \tag{12.11}
\end{equation*}
$$

Example

A continuous beam $A B C D$ is carrying a uniformly distributed load of $1 \mathrm{kN} / \mathrm{m}$ over span $A B C$ in addition to concentrated loads as shown in Fig.12.4a. Calculate support reactions. Also, draw bending moment and shear force diagram. Assume $E I$ to be constant for all members.

Fig. 12.4 (a) Continuous beam of Example 12.1

Fig. 12.4 (b) Bending moment diagram due to applied loading
From inspection, it is assumed that the support moments at A is zero and support moment at C,
$M_{C}=15 \mathrm{kN} . \mathrm{m} \quad$ (negative because it causes compression at bottom at C)
Hence, only one redundant moment M_{B} needs to be evaluated. Applying threemoment equation to span $A B C$,

$$
\begin{equation*}
2 M_{C}\{10+10\}+M_{C}(10)=-\frac{6 A_{R} x_{R}}{l_{R}}-\frac{6 A_{L} \bar{x}_{L}}{l_{L}} \tag{1}
\end{equation*}
$$

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

Equation (1) may be written as,

$$
40 M_{B}-150=-\frac{6 \times 83.33 \times 5}{10}-\frac{6 \times 125 \times 5}{10}-\frac{6 \times 83.33 \times 5}{10}
$$

Thus,

$$
M_{B}=-18.125 \quad \mathrm{kN} . \mathrm{m}
$$

After determining the redundant moment, the reactions are evaluated by equations of static equilibrium. The reactions are shown in Fig.12.4c along with the external load and support bending moment.

Fig. 12.4 (c) Free - body diagram of two members

Shear force diagram (S.F.D)

Bending moment diagram (B.M.D)
Fig. 12.4(d). SHEARE FORCE \& BENDING MOMENT DIAGRAM.

In span $A B, R_{A}$ can be calculated by the condition that $\sum M_{B}=0$. Thus,

$$
\begin{align*}
& R_{A} \times 10-10 \times 5-10 \times 5+18.125=0 \\
& R_{A}=8.1875 \mathrm{kN} \quad(\uparrow) \\
& R_{B L}=11.8125 \mathrm{kN} \quad(\uparrow)
\end{align*}
$$

Similarly from span $B C$,

$$
\begin{align*}
& R_{C}=4.7125 \mathrm{kN} \\
& R_{B R}=5.3125 \mathrm{kN}
\end{align*}
$$

The shear force and bending moment diagrams are shown in Fig.12.4d.

Example

A continuous beam $A B C$ is carrying uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ as shown in Fig.12.5a.The moment of inertia of span $A B$ is twice that of span $B C$. Evaluate reactions and draw bending moment and shear force diagrams.

Fig. 12.5 (a) Example 12.2

Fig. 12.5(b) Free body diagram of span $A B$

Fig. 12.5(c) Continuous beam within imaginary span $A A^{\prime}$
By inspection it is seen that the moment at support C is zero. The support moment at A and B needs to be evaluated .For moment at B, the compatibility
equation is written by noting that the tangent to the elastic curve at B is horizontal .The compatibility condition corresponding to redundant moment at A is written as follows. Consider span $A B$ as shown in Fig.12.5b.

The slope at A, θ_{A} may be calculated from moment-area method. Thus,

$$
\begin{equation*}
\theta_{A}=\frac{M_{B} l_{L}}{6 E I_{L}}+\frac{M_{A} l_{L}}{3 E I_{L}}+\frac{A\left(\bar{x}_{L}\right)_{R}}{E I l_{L}} \tag{1}
\end{equation*}
$$

Now, compatibility equation is,

$$
\begin{equation*}
\theta_{A}=0 \tag{2}
\end{equation*}
$$

It is observed that the tangent to elastic curve at A remains horizontal. This can also be achieved as follows. Assume an imaginary span $A A^{\prime}$ of length L^{\prime} left of support A having a very high moment of inertia (see Fig. 12.5c). As the imaginary span has very high moment of inertia, it does not yield any imaginary span has very high moment of inertia it does not yield any $M / E I$ diagram and hence no elastic curve. Hence, the tangent at A to elastic curve remains horizontal.
Now, consider the span $A^{\prime} A B$, applying three-moment equation to support A,

The above equation is the same as the equation (2). The simply supported bending moment diagram is shown in Fig.12.5d.

Fig. 12.5 (d) Bending moment diagram due to applied loading
Thus, equation (3) may be written as,

$$
20 M_{A}+M_{B}(10)=-\frac{6 \times(166.67) \times 5}{10}
$$

$$
\begin{equation*}
20 M_{A}+10 M_{B}=-500 \tag{4}
\end{equation*}
$$

Now, consider span $A B C$, writing three moment equation for support B,

$$
\begin{align*}
& 5 M_{A}+20 M_{B}=-250-62.5 \tag{5}\\
& =-312.5
\end{align*}
$$

Solving equation (4) and (5),

$$
\begin{aligned}
M_{B} & =-6.25 \mathrm{kN} . \mathrm{m} \\
M_{A} & =-37.5 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

The remaining reactions are calculated by equilibrium equations (see Fig.12.5e)

Fig. 12.5 (e) Free - body diagram of two members

S.F.D

B.M.D

Fig. 12.5 (f) Shear force and bending moment diagrams
In span $A B, \sum M_{B}=0$

$$
R_{A} \times 10-37.5-2 \times 10 \times 5+6.25=0
$$

$$
\begin{align*}
& R_{A}=13.125 \mathrm{kN} \\
& R_{B L}=6.875 \mathrm{kN}
\end{align*}
$$

Similarly from span $B C$,

$$
\begin{align*}
& R_{C}=3.75 \mathrm{kN} \\
& R_{B R}=6.25 \mathrm{kN}
\end{align*}
$$

The shear force and bending moment diagrams are shown in Fig. 12.5f.

Summary

Here the continuous beam with unyielding supports is analyzed by threemoment equations. The three-moment equations are derived for the case of a continuous beam having different moment of inertia in different spans. The threemoment equations also belong to force method of analysis and in this case, redundants are always taken as support moments. Hence, compatibility equations are derived in terms of three support moments. Few problems are solved to illustrate the procedure.

Chapter 5

The Three-Moment Equations-II

Instructional Objectives

After reading this chapter the student will be able to

1. Derive three-moment equations for a continuous beam with yielding supports.
2. Write compatibility equations of a continuous beam in terms of three moments.
3. Compute reactions in statically indeterminate beams using three-moment equations.
4. Analyse continuous beams having different moments of inertia in different spans and undergoing support settlements using three-moment equations.

Introduction

Previously, three-moment equations were developed for continuous beams with unyielding supports. The support may settle by unequal amount during the life time of the structure. Such future unequal settlement induces extra stresses in statically indeterminate beams. Hence, one needs to consider these settlements in the analysis. The three-moment equations developed previously could be easily extended to account for the support yielding. In the next section threemoment equations are derived considering the support settlements. In the end, few problems are solved to illustrate the method.

Derivation of Three-Moment Equation

Consider a two span of a continuous beam loaded as shown in Fig.13.1. Let M_{L}, M_{C} and M_{R} be the support moments at left, center and right supports respectively. As stated in the previous lesson, the moments are taken to be positive when they cause tension at the bottom fibers. I_{L} and I_{R} denote moment of inertia of left and right span respectively and $l_{L} \quad$ and l_{R} denote left and right spans respectively. Let δ_{L}, δ_{C} and δ_{R} be the support settlements of left, centre and right supports respectively. $\quad \delta_{L}, \delta_{C}$ and δ_{R} are taken as negative if the settlement is downwards. The tangent to the elastic curve at support C makes an angle $\theta_{C L}$ at left support and $\theta_{C R}$ at the right support as shown in Fig. 13.1. From the figure it is observed that,

Fig. 13.1 Continuous beam with support settlement

$$
\begin{equation*}
\theta_{C L}=\theta_{C R} \tag{13.1}
\end{equation*}
$$

The rotations $\beta_{C L}$ and $\beta_{C R}$ due to external loads and support moments are calculated from the $M / E I$ diagram. They are :

$$
\begin{align*}
& \beta_{C L}=\frac{A_{L} \bar{x}_{L}}{E I_{L} l_{L}}+\frac{M_{L} l_{L}}{6 E I_{L}}+\frac{M_{C} l_{L}}{3 E I_{L}} \tag{13.2a}\\
& \beta_{C R}=\frac{A_{R} \bar{x}_{R}}{E I_{R} l_{R}}+\frac{M_{R} l_{R}}{6 E I_{R}}+\frac{M_{C} l_{R}}{3 E I_{R}} \tag{13.2b}
\end{align*}
$$

The rotations of the chord $L^{\prime} C^{\prime}$ and $C^{\prime} R^{\prime}$ from the original position is given by

$$
\begin{align*}
& \alpha_{C L}=\frac{\delta_{L}-\delta_{C}}{l_{L}} \tag{13.3a}\\
& \alpha_{C R}=\frac{\delta_{R}-\delta_{C}}{l_{R}} \tag{13.3b}
\end{align*}
$$

From Fig. 13.1, one could write,

$$
\begin{align*}
& \theta_{C L}=\alpha_{C L}-\beta_{C L} \tag{13.4a}\\
& \theta_{C R}=\beta_{C R}-\alpha_{C R} \tag{13.4b}
\end{align*}
$$

Thus, from equations (13.1) and (13.4), one could write,

$$
\begin{equation*}
\alpha_{C L}-\beta_{C L}=\beta_{C R}-\alpha_{C R} \tag{13.5}
\end{equation*}
$$

Substituting the values of $\alpha_{C L}, \alpha_{C R}, \beta_{L}$ and $\beta_{C R}$ in the above equation,

This may be written as

The above equation relates the redundant support moments at three successive spans with the applied loading on the adjacent spans and the support settlements.

Example 1

Draw the bending moment diagram of a continuous beam $B C$ shown in Fig.13.2a by three moment equations. The support B settles by 5 mm below A and C. Also evaluate reactions at A, B and C.Assume $E I$ to be constant for all members and $E=200 \mathrm{GPa}, I=8 \times 10^{6} \mathrm{~mm}^{4}$

Fig. 13.2(a) Example 13.1

Fig. 13.2(b) Bending moment diagram due to applied loading

Assume an imaginary span having infinitely large moment of inertia and arbitrary span L^{\prime} left of A as shown in Fig.13.2b. Also it is observed that moment at C is zero.

The given problem is statically indeterminate to the second degree. The moments M_{A} and M_{B}, the redundants need to be evaluated. Applying three moment equation to the span $A^{\prime} A B$,

$$
\begin{aligned}
& \delta_{L}=\delta_{C}=0 \text { and } \delta_{R}=-5 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$$
\begin{align*}
& 8 M_{A}+4 M_{B}=-24-6 E I \times \frac{5 \times 10^{-3}}{4} \tag{1}
\end{align*}
$$

Note that, $E I=200 \times 10^{9} \times \frac{8 \times 10^{6} \times 10^{-12}}{10^{3}}=1.6 \times 10^{3} \mathrm{kNm}^{2}$ Thus,

$$
\begin{gather*}
8 M_{A}+4 M_{B}=-24-6 \times 1.6 \times 10^{3} \times \frac{5}{\times 10^{-3}} \\
8 M_{A}+4 M_{B}=-36 \tag{2}
\end{gather*}
$$

Again applying three moment equation to span $A B C$ the other equations is obtained. For this case, $\delta_{L}=0, \delta_{C}=-5 \times 10^{-3} \mathrm{~m}$ (negative as the settlement is downwards) and $\delta_{R}=0$.

$$
\begin{gather*}
\stackrel{4 \leftrightarrow}{M_{A}} I_{\uparrow}^{\leftarrow}+2 M_{B} \\
I^{4} \\
I \tag{3}\\
\stackrel{4}{\leftarrow} \stackrel{\leftrightarrow}{=}- \\
I \\
4 M_{A}+16 M_{B}=-24-32+6 \times 1.6 \times 10^{3} \times \frac{10 \times 10^{3}}{4} \\
4 M_{A}+16 M_{B}=-32
\end{gather*}
$$

Solving equations (2) and (3),

$$
\begin{align*}
M_{B} & =-1.0 \mathrm{kN} . \mathrm{m} \\
M_{A} & =-4.0 \mathrm{kN} . \mathrm{m} \tag{4}
\end{align*}
$$

Now, reactions are calculated from equations of static equilibrium (see Fig.13.2c).

Fig.13.2 (c) Free - body diagram of two members

Shear force diagram

Bending moment diagram
Fig.13.2(d) Shear force and bending moment diagram
Thus,

$$
\begin{aligned}
& R_{A}=2.75 \mathrm{kN}(\uparrow) \\
& R_{B L}=1.25 \mathrm{kN}(\uparrow) \\
& R_{B R}=4.25 \mathrm{kN}(\uparrow) \\
& R_{C}=3.75 \mathrm{kN}(\uparrow)
\end{aligned}
$$

The reactions at B,

$$
\begin{equation*}
R_{B}=R_{B R}+R_{B L}=5.5 \mathrm{kN} \tag{5}
\end{equation*}
$$

The area of each segment of the shear force diagram for the given continuous beam is also indicated in the above diagram. This could be used to verify the previously computed moments. For example, the area of the shear force diagram between A and B is 5.5 kN .m. This must be equal to the change in the bending moment between A and D, which is indeed the case ($-4-1.5=5.5 \mathrm{kN} . \mathrm{m}$). Thus, moments previously calculated are correct.

Example 2

A continuous beam $A B C D$ is supported on springs at supports B and C as shown in Fig.13.3a. The loading is also shown in the figure. The stiffness of springs is $k_{B}=\frac{E I}{20}$ and $k_{C}=\frac{E I}{30}$.Evaluate support reactions and draw bending moment diagram. Assume EI to be constant.

Fig.13.3(a) Continuous beam of Example 13.2

Fig.13.3(b) Bending moment diagram on simple spans due to applied loading

Fig.13.3(c) Computation of reactions
In the given problem it is required to evaluate bending moments at supports B and C. By inspection it is observed that the support moments at A and D are zero. Since the continuous beam is supported on springs at B and C, the support settles. Let R_{B} and R_{C} be the reactions at B and C respectively. Then the support settlement at B and C are $\frac{R_{B}}{k_{B}}$ and $\frac{R_{C}}{k_{C}}$ respectively. Both the settlements are negative and in other words they move downwards. Thus,

$$
\begin{equation*}
\delta_{A}=0, \delta_{B}=\frac{-20 R_{B}}{E I}, \delta_{C}=\frac{-30 R_{C}}{E I} \text { and } \delta_{D}=0 \tag{1}
\end{equation*}
$$

Now applying three moment equations to span $A B C$ (see Fig.13.2b)

Simplifying,

$$
\begin{equation*}
16 M_{B}+4 M_{C}=-124+60 R_{B}-45 R_{C} \tag{2}
\end{equation*}
$$

Again applying three moment equation to adjacent spans $B C$ and $C D$,

$$
\begin{align*}
& 4 M_{B}+16 M_{C}=-90+90 R_{C}-30 R_{B} \tag{3}
\end{align*}
$$

In equation (2) and (3) express $R_{B} \quad$ and R_{C} in terms of $\quad M_{B}$ and M_{C} (see Fig.13.2c)

$$
\begin{align*}
& R_{A}=8+0.25 M_{B} \quad(\uparrow) \\
& R_{B L}=8-0.25 M_{B} \quad(\uparrow) \\
& R_{B R}=5+0.25 M_{C}-0.25 M_{B} \quad(\uparrow) \tag{4}\\
& R_{C L}=5+0.25 M_{B}-0.25 M_{C} \\
& R_{C R}=2-0.25 M_{C} \quad(\uparrow) \\
& R_{D}=6+0.25 M_{C} \quad(\uparrow)
\end{align*}
$$

Note that initially all reactions are assumed to act in the positive direction (i.e. upwards) .Now,

$$
\begin{align*}
& R_{B}=R_{B L}+R_{B R}=13-0.5 M_{B}+0.25 M_{C} \\
& R_{C}=R_{C L}+R_{C R}=7+0.25 M_{B}-0.5 M_{C} \tag{5}
\end{align*}
$$

Now substituting the values of R_{B} and R_{C} in equations (2) and (3),

$$
16 M_{B}+4 M_{C}=-124+60\left(13-0.5 M_{B}+0.25 M_{C}\right)-45\left(7+0.25 M_{B}-0.5 M_{C}\right)
$$

Or,

$$
\begin{equation*}
57.25 M_{B}-33.5 M_{C}=341 \tag{6}
\end{equation*}
$$

And from equation 3,

$$
4 M_{B}+16 M_{C}=-90+90\left(7+0.25 M_{B}-0.5 M_{C}\right)-30\left(13-0.5 M_{B}+0.25 M_{C}\right)
$$

Simplifying,

$$
\begin{equation*}
-33.5 M_{B}+68.5 M_{C}=150 \tag{7}
\end{equation*}
$$

Solving equations (6) and (7)

$$
\begin{align*}
& M_{C}=7.147 \mathrm{kN} . \mathrm{m} \\
& M_{B}=10.138 \mathrm{kN} . \mathrm{m} \tag{8}
\end{align*}
$$

Substituting the values of M_{B} and M_{C} in (4), reactions are obtained.

$$
\begin{array}{llll}
R_{A}=10.535 \mathrm{kN} & (\uparrow) & R_{B L}=5.465 \mathrm{kN} & (\uparrow) \\
R_{B R}=4.252 \mathrm{kN} & (\uparrow) & R_{C L}=5.748 \mathrm{kN} & (\uparrow) \\
R_{C R}=0.213 \mathrm{kN} & (\uparrow) & R_{D}=7.787 \mathrm{kN} & (\uparrow) \\
R_{B}=9.717 \mathrm{kN} & (\uparrow) \text { and } R_{C}=5.961 \mathrm{kN} & (\uparrow)
\end{array}
$$

The shear force and bending moment diagram are shown in Fig. 13.2d.

Fig.13.2 (c) Free - body diagram of two members

Shear force diagram

Bending moment diagram
Fig.13.2(d) Shear force and bending moment diagram

Example 3

Sketch the deflected shape of the continuous beam $A B C$ of example 1.
The redundant moments $M_{A} \quad$ and $M_{B} \quad$ for this problem have already been computed in Example 1 above. They are,

$$
\begin{aligned}
& M_{B}=-1.0 \mathrm{kN} . \mathrm{m} \\
& M_{A}=-4.0 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

The computed reactions are also shown in Fig.13.2c.Now to sketch the deformed shape of the beam it is required to compute rotations at B and C. These joints rotations are computed from equations (13.2) and (13.3).
For calculating θ_{A}, consider span $A^{\prime} A B$

$$
\begin{align*}
\theta_{A} & =\beta_{A R}-\alpha_{A R} \\
& =\frac{A_{R} x_{R}}{E I_{R} l_{R}}+\frac{M_{B} l_{R}}{6 E I_{R}}+\frac{M_{A} l_{R}}{3 E I_{R}}-\square \frac{\delta_{B}-\delta_{A} \square}{4} \\
& =\frac{6 \times 8 \times 2}{1.6 \times 10^{3} \times 4}+\frac{M_{B} \times 4}{1.6 \times 10^{3} \times 6}+\frac{M_{A} \times 4}{1.6 \times 10^{3} \times 3}-\frac{(-4) \times 4}{4} \\
& =\frac{6 \times 8 \times 2}{1.6 \times 10^{3} \times 4}+\frac{(-1) \times 4}{1.6 \times 10^{3} \times 6}+\frac{\delta_{B}-\delta_{A}}{1.6 \times 10^{3} \times 3}+\square \frac{\square}{4} \\
& =0 \tag{1}
\end{align*}
$$

For calculating $\theta_{B L}$, consider span $A B C$

$$
\begin{aligned}
& \theta_{B L}=\alpha_{B L}-\beta_{B L} \\
& \square A_{L} x_{L} \quad M_{A} l_{L} \quad M_{B} l_{L} \square \quad \square \delta_{A}-\delta_{B} \square
\end{aligned}
$$

$$
\begin{align*}
& =1.25 \times 10^{-3} \text { radians } \tag{2}
\end{align*}
$$

For θ_{R} consider span ABC

$$
\begin{align*}
\theta_{B R} & =\frac{\square}{1.6 \times 10^{3} \times 2}+\frac{(-1) \times 4}{10.67 \times 10^{3} \times 3}-\square 0+5 \times 10^{3} \square \\
& =-1.25 \times 10^{-3} \text { radians } \tag{3}\\
\theta & =-\frac{10.67 \times 2}{\square}+\frac{(-1) \times 4}{\square} \quad \square 1.6 \times 10^{3} \times 4 \quad 1.6 \times 10^{3} \times 3 \\
c & \square \delta_{B}-\delta_{C} \square \\
& =-3.75 \times 10^{-3} \text { radians. } \tag{4}
\end{align*}
$$

The deflected shape of the beam is shown in Fig. 13.4.

Shear force diagram

Bending moment diagram

A

Fig.13.4(a) Elastic curve Example 13.3

Summary

Earlier ,the continuous beams with unyielding supports are analysed using threemoment equations. Here, the three-moment-equations developed in the previous lesson are extended to account for the support settlements. The three-moment equations are derived for the case of a continuous beam having different moment of inertia in different spans. Few examples are solved to illustrate the procedure of analysing continuous beams undergoing support settlements using threemoment equations.

